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The LRC Series Circuit

Theory Sheet 1

Learning Outcomes
After using the MathinSite LRC Series Circuit applet and its accompanying tutorial and
theory sheets you should
• be aware of the composition of an LRC Series circuit
• be able to model the LRC Series Circuit mathematically
• be aware of solution methods for the LRC circuit’s associated differential equation
• be aware of the different types of solution of the LRC circuit differential equation
• have developed, through experimentation with the applet, an understanding of how the

current in an LRC series circuit responds to changes in system parameters and applied
voltages

• be able to answer “what if ...?” questions about the LRC Series Circuit.

Prerequisites
Before using the applet and the accompanying theory and tutorial sheets, familiarity with the
following mathematics would be useful (but not vital).

• The Straight Line
• The Exponential Function – including the notion of ‘time constants’
• Trigonometrical Functions (in particular sines and cosines)
• Differentiation and Integration, and
• The solution of linear second-order differential equations

However, even without this knowledge, just understanding how the circuit responds can
help in your appreciation of the mathematics involved. Applets covering most of the above
mathematical topics can also be found on the MathinSite web site at
(http://mathinsite.bmth.ac.uk/html/applets.html).

Background
Inductance, L, resistance, R, and capacitance, C, are the building blocks of basic electrical
systems studied in first-year undergraduate engineering. A voltage (the input) applied to such
a circuit containing these elements will result in a current flow (the output, or response) and a
change in the charge on the capacitor. But what form does the resulting response take?

This applet allows investigation of a circuit containing an inductor, a resistor and a capacitor
in series. The parameters L, R and C can be varied, along with the initial current in the circuit
and applied voltages (constant, ramp, sinusoidal and exponentially varying voltages can be
input). The applet displays the circuit’s response as graphical output together with the
governing differential equation and its solution, i.e. the mathematical equation of the resulting
current.

Using the LRC Series Circuit applet will help give you a feel for how changes of the circuit
parameters affect circuit response – both graphically and mathematically.
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L R C
The LRC series circuit

             e(t)
The electrical circuit above shows an inductance L, a resistance R and a capacitance C, in
series. A current i(t) will flow in the circuit when a voltage e(t) is applied.

Using i(t) and e(t) indicates that current and voltage vary with time (i.e. they are time-
dependent variables). Of course this doesn’t preclude the possibility that the voltage, for
example, could be constant (e.g. the voltage source is a battery).

The drop in voltage (i.e. potential drop) across the resistance is iR (from Ohm’s Law),

across L it is L
di
dt

 and across C it is 
0

1 t
idt

C ∫ .

Kirchhoff’s 2nd Law says that the sum (i.e. addition) of potential drops across all of the non-
supply elements in the circuit equals the applied voltage of the supply. So,

and this an integro-differential equation!

Solving general equations of this type can be difficult. However, for this particular equation
there are two ways forward that simplify the problem.

Method 1
Bearing in mind that the current in the circuit is given by the rate of change of charge

on the capacitor, it is possible to relate i and q using 
dq

i
dt

=  where q is the charge on the

capacitor measured in coulombs.

Upon integration, this gives 
0

t
q idt= ∫  and upon differentiation, 

2

2

di d q
dt dt

=

So rewriting the above integro-differential equation in terms of q rather than i gives

This is now a linear second-order differential equation with constant coefficients,
which can be solved by a variety of methods to find the charge, q, in terms of time, t.
Methods of solution will be discussed later.

Quite often, it is the expression for current that is required and, here, differentiating this
solution for q with respect to t will give the solution for the current, i, in terms of t (since

dq
i

dt
= ).
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1
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dt C
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Method 2
Differentiating the above integro-differential equation with respect to t gives

(noting that 0

t
d idtdq

i
dt dt

= =∫ ).

This is again a linear second-order differential equation with constant coefficients
which can be solved by a variety of methods to find directly the current, i, in terms of time, t.
Note here that the right hand side is the differential of the applied voltage.

Integrating the solution for i with respect to t will give the charge, q, in terms of t.

Usually such differential equations require two initial conditions specifying values for the
current (or charge) and the rate of change of current (or charge) in the circuit when the
voltage source is applied (often at time zero). These could look like, for example,

i = io when t = 0 (or as i(0) = io) and 
di

X
dt

= when t = 0      (io and X are specified values).

Solving Second-order Differential Equations
As with many real-world applications, the LRC series circuit is a time-dependent system.
Generally, the solution of such a system’s differential equation is the output of the system
and is, in this case, i (or q) at time, t.  It is therefore necessary to solve the differential
equation to obtain “i (or q) = some function in terms of t”.

The LRC Series Circuit’s differential equation can be solved in a variety of ways. Two ways
will be illustrated here. If you are using the applet purely to investigate the type of
response obtained when varying the parameters of an LRC Series Circuit, you do not
need to understand the following. However, all engineering undergraduates should be
familiar with at least one, if not both, of the following methods.

( )2

2

1 de td i di
L R i

dt C dtdt
+ + =

Digression on Variables and Parameters  In the above circuit e(t) is the input to the
circuit and it varies with time, i.e. it is time dependent.  i(t) is the output of the circuit once
the input voltage has been applied and it, too, is a time dependent variable.

i(t) and e(t) are called dependent variables since they are dependent here on time, t,
which is called the independent variable.  Note that in any such circuit, current and
voltage will vary (unless they are constant) all the time.  However, in a particular circuit L, R
and C will always take just the one value for all time.  This doesn’t mean it is not possible to
change any of them - but if they are changed, this results in a completely different circuit and
hence a completely different differential equation to solve.  Here, L, R and C are
parameters of the system.
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To see how the current changes in the LRC circuit when an applied voltage is switched on,
it is necessary to solve, with appropriate initial conditions, the circuit equation

2

2

1 ( )d i di de t
L R i

dt dt C dt
+ + =

Suppose that for a particular circuit,
§ L = 1 H and R = 3 Ω and C = 0.5 F (these are unrealistic ‘real-world’ values but they

make the calculations easier!)
§ a ramp voltage given by e(t) = 4t, is applied and
§ initially the current is 3 amp and is changing at a rate of  -2 amperes per second.

In this case, the governing differential equation is
2

2 3 2 4
d i di

i
dt dt

+ + =

and the initial conditions are i = 3 and 2
di
dt

= −  when t = 0.

Method of Solution 1. (The ‘assumed solution’ method)

Further examples and some background explanation of this method can be found in a variety of
textbooks. One such example is “Engineering Mathematics” by Stroud, K.A. and Booth, D.J. (Fifth
edition, published by Palgrave, UK, 2001) See pages 1071 – 1096.

All differential equations of this type have two parts to their solution: the complementary
function (CF) and the particular integral (PI). The CF relates to the left side of the
differential equation (and so relates purely to the LRC system itself) and the PI relates to the
right side of the differential equation (and so relates to the applied voltage). The overall
solution is found simply by adding the CF and the PI.

To find the CF

put 
2

2 3 2 0
d i di

i
dt dt

+ + =

Since it is known that all differential equations of this type have exponential solutions, assume
a solution of the form mti Ae=  and substitute for i and its first and second derivatives to
obtain the auxiliary equation:

2 3 2 0m m+ + =
This has solutions m = -1 and m = -2

So the CF is
2

CF
t ti Ae Be− −= +

To find the PI
Since this type of differential equation is ‘linear’, it is known that ‘what goes in, comes out’.
So if the applied term is a constant (4, in this case) then the PI is also a constant.

Assume that the PI part of the solution is i = k, where the value of constant k has to be
determined. So substituting i = k and its first and second derivatives into the full, original
differential equation gives

Remember: the differential
of the applied voltage.
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0 3 0 2 4k+ × + = i.e. k = 2,
so PI 2i =

The overall general solution is given by CF PIi i i= + , so 2 2t ti Ae Be− −= + +

It is now necessary to determine the unknown constants A and B, which are found using the
initial conditions:

2 0 2 02 3 2t ti Ae Be Ae Be− − − − ×= + + ⇒ = + +                          so A + B = 1
and

2 0 2 02 2 2t tdi
Ae Be Ae Be

dt
− − − − ×= − − ⇒ − = − −                       so –A – 2B = -2

These two simultaneous equations in A and B can be solved to find B = 1 and A = 0.

So, The overall particular solution is given by 2 2ti e−= +

This has the solution curve
     i
3

2
2.5 sec (approx)        t

Note that the current settles down to a steady-state value of 2 amp (relating to the input to
the system). This current has a time constant,τ , of ½ second so that the transient (the
part of the solution relating to the system itself and its associated exponential decay) dies
away in about 5 τ× = 2½ second.

Note on time constants: Any exponential decay term of the form e-kt  (k  > 0) has a time constant defined
by τ = 1/k . τ is a useful quantity since τ×5  gives a measure of approximately how long the
exponential term takes to decay away to zero. In this theory sheet and in MathinSite’s LRC Series
Circuit applet, τ×5  is used, although some other authors use τ×6 .

Further information on time constants can be found in the theory and tutorial sheets of MathinSite’s
‘Exponential Function’ applet.

The LRC Series Circuit differential equation can also be solved using Laplace Transforms .
If you are studying on an engineering course, it is highly likely that you are, or soon will be,
familiar with this method. As an introduction (or reminder) of the method, let’s solve the
same equation, but this time using Laplace Transforms (LTs).
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Method of Solution 2. The Laplace Transform Method
2

2 3 2 4
d i di

i
dt dt

+ + =

and the initial conditions are i = 3 and 2
di
dt

= −  when t = 0.

Take the Laplace transform of the differential equation to give

( ) ( )

( ) ( ) ( )

2

2

2
2

2

4
3 ( 2) 3 3 2 , or

4
( 3 2) 3 2 9 , so

4 3 7 4
( 3 2) 3 7

3 7 4 2 1
1 2 2

s i s si i
s

s + s i s
s

s s
s + s i s

s s
s s

i
s s s s s

− − − + − + =

+ − + − =

+ +
+ = + + =

+ +
= = +

+ + +
by “Partial Fractions”.

Now take inverse Laplace Transform to find i(t).
(These can be found from LT tables reading from the right-hand column across to the

left-hand column.)

22 ti e−= + as before.

If you have not seen this method before, don’t worry. It’s here just to show you that there is
another way of solving such differential equations. The LT method of solution is a most
powerful and more sophisticated method, which totally bypasses the need to ‘assume
solutions’. Furthermore, the initial conditions are “taken care of” at the outset - there is no
need to determine separately the constants A and B.  Hopefully, you can see that the LT
method has “possibilities”!

The LT method contained unexplained variables, (s), and needed the use of partial fractions.
However, Laplace Transforms are extensively used in electronic, electrical, mechanical and
control systems, so it is clear to see that knowledge of how they are manipulated becomes
imperative to any engineer.

Same equation and initial conditions as before, but this time the
Laplace Transform of the equation will be used - found from tables
of  LTs from formula, or text, books (e.g. Stroud & Booth).

REMINDER:  from the definition of the Laplace Transform (LT) and tables of transforms,

§ the LT of i(t) is i ,

§ the LT of 
dt

di
 is )0(iis − ,  where i(0) is the value of i when t = 0, and

§ the LT of 
2

2
d i

dt
 is 2 (0) (0)s i s i i′− − ,  where, again, i(0) is the value of i when t = 0,

and i’(0) is the value of the differential of i at t = 0

§ the LT of 4 is 
4
s

.
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Appendix

Analysis of different parts of the solution

An LRC Series Circuit is a ‘linear system’, that is, it behaves according to the rule “what
goes in, comes out”. So a sinusoidal input (right hand side of the differential equation), for
example, results in a sinusoidal output. However, before the circuit settles down to a steady
state sinusoidal output, it usually exhibits an exponential response (the transient – or ‘short
lived’ - part of the response).

The LRC differential equation’s solution comes in two parts:

( ) ( )i f t g t= +

The first part, f(t) is called the Complementary Function (CF) and, being dependent only
on R, C and L, results from the system (circuit) itself. It invariably involves exponential decay
for non-trivial cases.

Since ( )f t exponentially decays away, this part of the solution is called the transient.

The second part, g(t) is called the Particular Integral (PI) and results from, and takes the
same form as, the right-hand side of the differential equation (which is related to the input to
the system). So, if the right hand side is a sinusoid, the PI will also be a sinusoid (possibly a
mix of sines and cosines); if it is of the form ptae  then the PI is ptBe  (or ( ) pteCBt +  under
certain conditions).

g(t) is the steady state part of the response.

… so,

“the PI (steady state output) is the same form (trig, exponential, algebraic, etc) as the right
hand side of the d.e.”

and this is characteristic of linear systems such as the LRC Series Circuit.

The overall solution (current or charge) is the sum of the CF and PI.

Note that various mixes of values for the initial conditions, system parameters and applied voltage
parameters can result in any part of the full solution being zero (as happened in the above example).


