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 Analogue-to-Digital Pole Mapping 
 

Learning Outcomes 
After reading this theory sheet, you should  

• recognise the difference between the continuous-time Laplace Transform 
parameter, s, and the Z-Transform discrete-time parameter, z 

• know how to determine system poles from a transfer function 
• know how the positions of system poles in the s-plane indicate system 

response and be able to identify stable or unstable systems 
• know how the exact s  z transformation, and three s  z approximations, map 

pole positions from the s-plane to the z-plane. 
• ascertain the effect of these transformations on system response and stability 

 

Background knowledge required 
To maximize your understanding of this theory sheet and its accompanying applet, it 
will help if you are familiar with first- and second-order continuous-time analogue 
systems and their analysis using Laplace Transforms, also discrete-time z-transform 
methods. For an investigation of the response of discrete-time digital systems, see 
MathinSite’s ‘First Order Digital Systems’ applet and its accompanying theory sheet 
on http://mathinsite.bmth.ac.uk/html/applets.html. 
 

Continuous-time Systems: Transfer Functions, Characteristic Equations and 
System Stability 
Consider two different systems; first, an electrical RC series circuit and second, a 
mechanical mass-spring-damper system. Typical governing differential equations for 
these systems are, respectively, 

RC dv
dt

v u+ =  and 
2

2

d y dym R ky
dt dt

u+ + =  

where u is the input to each system and v and y are the outputs, respectively. 
 

Taking Laplace Transforms of each (with zero initial conditions) and writing the 
transformed equations in the format 

L.T. of output
L.T. of input

 

gives the transfer functions for each system as 
1

RC 1
v

su
=

+
 and 2

1y
ms Rs ku

=
+ +

 

 

Setting the denominator of the right-hand side of each to zero gives the characteristic 
equation. This gives the position of the system’s pole(s) in the complex s-plane. 
 

The position of system poles in the s-plane is an indicator of system stability. The 
parameter s is a complex number which can be plotted in an Argand Diagram (the s-
plane). If all of a system’s poles are in the left half-plane (i.e. strictly to the left of the 
vertical, Imaginary axis) of the Argand Diagram then the system is stable (i.e. the 
system response is finite – never infinite) 
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For the RC circuit with characteristic equation RCs + 1 = 0, there is only one pole 
which is situated at s = -1 / RC. This is necessarily negative since R and C (resistance 
and capacitance) are necessarily positive. 
 

For the mass-spring-damper system, with characteristic equation , 
(and m, R and k all positive) there are two poles situated at 

2 0ms Rs k+ + =

2 24 4or
2 2 2

R R mk R R ms s
m m

− ± − −
= = − ±

k
m

 

 The solutions here will be of the form (depending on the relative sizes of R2 and 4mk) 
(a) two real, distinct negative roots (when R2 – 4mk > 0) 
(b) two real, equal negative roots (when R2 – 4mk = 0) 
(c) two complex conjugate roots (when R2 – 4mk < 0), in which the real part is 

negative. 
 

A more extensive discourse on the response of second-order systems can be found on 
http://mathinsite.bmth.ac.uk/pdf/solsmaths.pdf
 

In general, systems like these, necessarily stable systems, will always have their poles 
in the left-half of the s-plane (i.e. the real part of any solution will be negative). This 
can be seen in the s-plane diagram in the MathinSite’s First Order Analogue to 
Digital Systems applet available from http://mathinsite.bmth.ac.uk/html/applets.html
in which it is possible to relate system response (in the main graphics area) to pole 
positions (in the small graphics area). So … 
 

Stable continuous-time systems are those in which the system response always settles 
down to a steady value, usually involving transient exponential decay. In this case, 
system poles are in the left half of the s-plane. 
 

However, unstable continuous-time systems have their system poles in the right-half 
of the s-plane. In unstable systems, the output becomes increasingly large, without 
limit, usually involving exponential growth - something which is unsustainable in 
real-world systems. 
 

A system with poles purely on the Imaginary axis is a critically stable system and is 
one in which the system response exhibits neither exponential growth nor decay.  
 

Since the s-plane, or s-domain, is effectively an Argand Diagram, the position of any 
point in the s-plane is a complex number, in this context usually written in the form 

ωσ js +=  where the real part σ  is related to the exponential part of a response and 
is directly related to the time constant for stable systems. Necessarily, σ  < 0 for 
stable systems. ω  is related to the frequency of any oscillations that may occur in 
second-order systems (never in first order systems). 
 

Mapping s-plane poles in to the z-plane 
Analogue to digital (A/D) conversions are often required in computer controlled 
systems where, for example, an analogue signal (perhaps a voltage) has to be 
converted to a digital signal – the only form of signal which can be manipulated by 
digital computers. The exact transformation from the s- to the z-plane is given by 

sTez =  
where z, again complex, is the digital equivalent of the analogue s, and T is sampling 
time. Needless to say, the z-plane is also a complex plane (an Argand Diagram). 
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Bearing in mind that, for a continuous-time system, 
  σ  < 0 implies a stable system (pole is in the left half plane) 

  σ  = 0 implies critical stability and 
  σ  > 0 implies an unstable system, 
what is the equivalent set of conditions when working in the z – domain? 
 

Using the Exact transformation 
sTez = , 

    so ( ) TjTTj eeez ωσωσ == +  
    or ( )TjTez T ωωσ sincos +=    by Euler’s Identity 
    i.e.  TejTez TT ωω σσ sincos +=
 

Consider now the magnitude of z,  ( ) ( )22 sincos TeTez TT ωω σσ +=  

     ( ) ( )TTez T ωωσ 222 sincos +=  

    i.e. Tez σ=  
 

Now when σ  = 0, 1=z , i.e. a circle, centre (0, 0) and radius 1, 

and when σ  < 0, 1<z , i.e. area inside circle, centre (0, 0) and radius 1, 

and when σ  > 0, 1>z , i.e. area outside circle, centre (0, 0) and radius 1. 
 

So, under the s  z ‘EXACT’ transformation, σ  < 0 (the stable region) is mapped 
into the unit circle centred on the origin in the z- plane. The stable region in the 

‘digital’ z-plane is the inside the unit circle. 
 

Digital systems whose poles all lie within this unit circle in the z- plane are stable 
systems. 

 
Using Approximate Transformations 
 

1. Using the backward transformation, 

zT
zs 1−

=      

put z = x + jy to give   
( )
( )Tjyx

jyxs
+

+−
=

1 ( )( )( )
( )22

1
yxT

jyxjyx
+

−+−
=  

 

Here, we are only interested in the real part of s (i.e.σ , since σ  < 0 is the stability 
condition) and, for the above expression, the real part of s is given by 

     Re{s} = σ  = 0
)(

)1(
22

2

<
+
+−
yxT

yxx  for stability 

Now T, the sampling time, and x2 + y2 are necessarily positive, so for σ  to be less 
than zero,     0)1( 2 <+− yxx
    or x2 + y2 – x < 0 
and completing the square gives (x – ½)2 + y2 < (½)2

 
With an equals sign, this is a circle radius ½, centre (½, 0). 
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With σ  < 0, under the s  z ‘BACKWARD’ transformation, the stable region in 
the z – plane is inside the circle radius ½, centre (½, 0). 

 
Note that since this circle is totally contained within the unit circle centred at the 
origin, so a stable analogue system can never be turned into an unstable digital 
system using the backward transformation. 
 

2. Using the forward transformation, 

T
zs 1−

=      

put z = x + jy to give   ( )
T

jyxs +−
=

1 ( )
T
yj

T
x

+
−

=
1  

 

Here again, we are only interested in the real part of s (i.e.σ , since σ  < 0 is the 
stability condition) and, for the above expression, the real part of s is given by 

     Re{s} = σ  = 0)1(
<

−
T

x  for stability 

Now T, the sampling time, is again necessarily positive, so for σ  to be less than zero,
     01<−x  
    or    x < 1 
 

With an equals sign, this is a vertical line at x = 1. 
 

With σ  < 0, under the s  z ‘FORWARD’ transformation, the left-half of the s – 
plane (the stable region) is mapped into the left-‘half’ plane of the z – plane to the 

left of x = 1. 
 

Note that since a part of this region is outside the unit circle centred at the origin, an 
A/D conversion, using the s  z ‘forward’ transformation can (but not necessarily) 
destabilise a stable system! 
 

3. Using the bilinear (or ‘Tustin’) transformation, 

     
1
1.2

+
−

=
z
z

T
s  

put z = x + jy to give   ( )
( )

( )
( ) jyx

jyx
jyx
jyx

T
s

−+
−+

×
++
+−

=
1
1

1
1.2  

 

Once again, we are only interested in the real part of s (i.e.σ , since σ  < 0 is the 
stability condition) and, for the above expression, the real part of s is given by 

     Re{s} = σ  = 
( )

0
1

)1(.2
22

22

<
++
+−

yx
yx

T
 for stability 

Now T, the sampling time, and (x+ 1)2 + y2 are necessarily positive, so for σ  to be 
less than zero,     0)1( 22 <+− yx
    or x2 + y2 – 1 < 0 
and completing the square gives x2 + y2 < 1 
 
With an equals sign, this is a circle radius 1, centre (0, 0), i.e. an exact mapping on to 
the boundary of the stable region in the z – plane! 
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With σ  < 0, under the s  z ‘BILINEAR’ transformation, the left-half of the s – 
plane (stable region) is mapped inside the unit circle, centre (0, 0) in the z – plane. 

 

Note that since this circle is the unit circle centred at the origin, an s  z ‘bilinear’ 
transformation can never destabilise a stable system. 

 
System Dynamics Considerations 
 

The position of zeroes, found by setting the denominator of the transfer function to 
zero, do not affect system stability and so are not covered here. In the s-plane, the 
position of poles and zeroes give an indication of system dynamics. For example, a 
system with poles at  results in different time constants and periodic times 
of oscillation from a system with poles at 

js 23±=
js 32 ±= . The system response (dynamics) 

will be different. The same applies when mapping poles in the z-plane. 
 

Under the EXACT transformation, system poles and zeroes will be mapped exactly 
from the s-plane to the z-plane. 
 

Using the FORWARD transformation, it has already been shown that stable poles in 
the s-plane may be mapped into unstable poles in the z-plane, i.e. A/D conversion 
using the forward difference approximation can result in an unstable digital system – 
using the forward transformation can destabilise an otherwise stable system! 
 

Using the BACKWARD transformation, poles cannot be placed in the full unit circle, 
so will be placed differently compared with the EXACT transformation, resulting in 
altered system dynamics. At least the backward transformation cannot destabilise a 
stable continuous-time system. 
 

The BILINEAR mapping of the boundary of the stable region matches exactly that of 
the EXACT transformation; therefore the full range of dynamic response is available. 
However, this is no guarantee that the dynamics will be fully preserved compared 
with the EXACT transformation. Again though, a digitised continuous-time stable 
system cannot be made unstable using the BILINEAR transformation. 
 

All of these effects can be seen using the accompanying “Analogue to Digital Pole 
Mapping” applet to be found on http://mathinsite.bmth.ac.uk/html/applets.html in 
which poles in the s-plane can be moved and the relevant movement of the positions 
of poles in the z-plane noted. Note that, in general, all poles found using any of the 
three approximation methods are placed slightly differently in the z-plane compared 
with the exact mapping. This indicates that system dynamics will be dependent on the 
approximation method chosen. Note also that the Tustin method generally (but not 
always) places its poles closest to the exact method, making it the preferred method in 
‘industrial’ applications. Note also, when using the applet, how pole position is 
heavily dependent on sampling time and that too long a sampling time can destabilise 
systems. 
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An Investigation to try using hand calculation 
 

The EXACT s  z transformation is  where sTez = ωσ js += . 
 

A stable analogue system has a pole at js 23+−= . Here 3σ = −  and 2ω = . 
Determine the corresponding positions of this pole in the z-plane given sampling 
times, T, of 10 seconds, 1 second, 0.1 second and 0.001 second for each of the exact 
transformation and the three approximation methods. This is best tabulated – as in the 
table below. Comment on the stability of the resulting digital equivalents. (For 
comparison and stability purposes, it may help to determine these positions in polar 
form.) 
 

Hint: Rearrange the FORWARD, BACKWARD and BILINEAR transformations, 

(
T

zs 1−
= , 

zT
zs 1−

=  and 
1
1.2

+
−

=
z
z

T
s  respectively) making z the subject in each case. 

 

For example, for the forward transformation, z = sT + 1, so when js 23+−= , T = 10, 
( )10 3 2 1 29 20z j= − + + = − + j . There is no need to convert this to polar form since 

this pole is obviously way outside the unit circle, i.e. a stable analogue system has 
been turned into an unstable digital system with this transformation / sampling time 
combination. 
 
For , z = js 23+−=

 Exact Forward Backward Bilinear 
T = 10  -29 + 20j   
T = 1     

T = 0.1     
T = 0.001     

 
 
Use the accompanying MathinSite applet to corroborate your answers where possible. 
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