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Second Order Linear Systems
The Mathematics
Learning Outcomes
After using the applet and the theory and tutorial worksheets you should
• be aware of the second-order differential equation for the Mass-Spring-Damper system.
• be aware of the second-order differential equation for the LCR series circuit.
• be able to relate second-order differential equations to second-order linear systems.
• understand how a second-order system behaves as the system poles are moved in the s-plane

(Argand Diagram).

Introduction
Second order linear systems occur in various branches of Engineering and Science; two examples
are given here and are both governed by second-order differential equations.

(1) The Forced Mass-Spring-Damper System
To the right is a schematic diagram of a spring suspended from a fixed point.
A mass is attached to the lower end of the spring and, in turn, a piston is fixed
below this mass. Finally, the piston is enclosed in a dashpot – this is the
damper. An external force is applied to the mass (the bold arrow), which may
be
a constant force, or one that vibrates, or exponentially decays or grows, etc.

The damping may be due solely to the dashpot arrangement as shown, but
may also be due to internal damping such as friction within the spring, or
external damping such as aerodynamic drag. This schematic diagram can be
used to represent, by the dashpot, whatever the cause of damping.

The displacement, y, at any time, t, of the mass is the output from the system and can be modelled
by the second order differential equation (a proof of which is not given here, but can be found in
the theory sheet for the “Mass-Spring-Damper System” applet):

( )tfky
dt
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where

• M is the mass
• R is the damping factor. The damping force here is assumed to be proportional to the velocity of

the mass - a reasonable approximation. R is the constant of proportionality.
• k is the spring stiffness (it is assumed the spring is not extended beyond its elastic limit, so

Hooke’s Law applies)
• f(t) is the time-dependent, or constant, external force driving the system – it is the input to the

system (e.g. f(t) = 20,  f(t) = 10sin2t, f(t) = 60e-3t)

 The LCR Series Circuit
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 Applying, amongst other things, Kirchhoff’s 2nd Law and Ohm’s Law to this circuit leads to
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 Again ( )f t  is the input to the system (here, it is actually the rate of change of applied voltage,
e(t)) and i is the current (output) in the circuit at time t. L, R and C (inductance, resistance and
capacitance) are the parameters of the system.
 
 Note the similarity between the differential equations of the two quite different systems given above.
This similarity is used in analogue systems in which a mechanical system can be simulated by the
equivalent electrical system.
 
 These differential equations can be rewritten generally as
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When Laplace Transforms are used to solve this equation with zero initial conditions, the
transformed compound algebraic fraction obtained (in terms of Laplace Transform’s s) is given, in
the usual notation, by

{ } ( ){ }
cbsas

tfL
yyL
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In order not to overcomplicate the output displayed on the screen,
 the input f(t) used in the accompanying software is f(t) = P where P is a constant. So the

system here is ‘driven’ by a constant forcing term.
The value of P can be changed from 0 to 200 by moving the slider on the right of the screen.

The Laplace Transform of a constant value P is, in the usual notation, P/s,
giving the full Laplace Transform of the system plus constant forcing term as

{ } ( )cbsass
P

yyL
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==
2

The cbsas ++2  part of the denominator of { }yL  indicates that this is a second-order system,
which has the characteristic equation,

02 =++ cbsas
The solution of this equation determines the position of the system’s two (but sometimes repeated)
poles in the s-plane (Argand Diagram). Note that there are three different types of solution to this
quadratic (i.e. second-order) equation depending on whether b2 – 4ac is less than zero, equal to
zero, or greater than zero. Consider each of these cases separately:

(1) b2 – 4ac < 0
This is the only one of the three cases where the poles will be complex and, in particular, complex
conjugates. This is because the solutions for the case b2 – 4ac < 0 are
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or, for compatibility with the accompanying applet, the system poles are placed at:
ωjks +=    and  ωjks −=

(Note: not the same k that was used in the differential equation for the mass-spring-damper system)

The system output relating to complex conjugate poles of this type is of the form
( )tBtAe kt ωω cossin +

Incorporating the constant applied input results in the full output:
( ) CtBtAey kt ++= ωω cossin     where A, B & C are constants

An important point to note here is that if k  is negative, then the system response involves exponential decay
only. In this case the system is said to be stable since, if the system is given a knock or displacement and has
no forcing term, it will settle back to its equilibrium position (courtesy of the exponential decay multiplying the
sinusoids). However, if k  is positive then the system responds with exponential growth and is said to be an
unstable system.

In general then, for k  < 0 (with its corresponding pole in the left half-plane of the Argand Diagram) this system
is stable. For k  > 0 (with its corresponding pole in the right half-plane of the Argand Diagram) this system is
unstable.

(2) b2 – 4ac > 0
In this case the characteristic equation will have solutions:
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Here both solutions are wholly real, no imaginary j term, so both poles will lie on the k axis only.
Since ω  will be zero, there will be no oscillations. Also, the two s values are different; so the poles
will be at different positions on the k axis, say k1 and k2.

The system output relating to two real, distinct poles, k1 and k2, is of the form
tktk BeAe 21 +

Incorporating the constant applied input results in the full output:
CBeAey tktk ++= 21     where A, B & C are constants

(both of these results are left as an exercise for the reader)

Note that in this case, both k 1 and k 2 would have to be in the left half-plane (i.e. k 1 < 0 and k 2 < 0) for the system
to be a stable system. Either pole in the right half-plane would result in a term with exponential growth, hence
an unstable system.

(3) b2 – 4ac = 0
In this case the characteristic equation will have solutions:
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i.e. repeated solutions. Again both poles are wholly real, no imaginary j term, so both will lie on the
k axis. Again, ω  = 0, so no oscillations. Now, however, the two s values are the same; so the
poles will be at the same position on the k axis, say k1.

The system output relating to two real, equal poles, k1 and k1, is of the form
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( ) tkeBtA 1+
Incorporating the constant applied input results in the full output:

( ) CeBtAy tk ++= 1     where A, B & C are constants

Note that in this case, k 1 “and k 1” would have to be in the left half-plane (i.e. k 1 < 0) for the system to be a stable
system.

The effect of changing k
The value of k, measured on the real (horizontal) axis relates to the amount of exponential
decay (for k <0) or exponential growth (for k >0). k is called the instantaneous fractional growth
rate. Different values of k represent different amounts of growth (or decay):

Value of k Type of Response
k > 0 (large positive value) ‘fast’ exponential growth
k > 0 (small positive value; close to zero) ‘slow’ exponential growth
k = 0 neither growth nor decay
k < 0 (small negative value; close to zero) ‘slow’ exponential decay
k < 0 (large negative value) ‘fast’ exponential decay

At this point try “Changing k only” from the accompanying tutorial worksheet
together with the applet

Solutions containing exponential decay terms only (stable systems) – as found when using
the software as suggested just above - consist of two parts, namely:

• the transient (which is due to the system itself and represented in the solution by the
exponential decay terms) and

• the steady state (which depends on the type of input, here the system has an applied
constant force).

For constant input, as used in the applet, the steady state is necessarily a constant output. The
transient is the way in which the system responds during the time it takes to reach its steady state (if
it has one! – a system acted upon with an increasing force will never settle down to a steady state
value). Transient means “short lived”. But how short is “short lived”? This can be determined from
the following table:

The right hand column shows that the value of e
t

−
τ  varies

from 100% at t = 0 to about 0.7% by t = 5τ.

τ  (Greek letter, “tau”) is called the “time constant”.

The implication is that by 5τ, the contribution of e
t

−
τ  has

died away to ‘practically nothing’. For our system, the
exponential terms are of the form kte − , so comparing with

e
t

−
τ , gives the important result, 

k
1

=τ

Note that here, the time constant, τ, is only appropriate for exponential decay, not growth.

At this point try “The effect of changing k on the time constant, τ” from the
accompanying tutorial worksheet together with the applet

  t e
t

−
×τ 100%

(as a percentage)
  0 e0  x 100 =100
  τ e-1 x 100 =   36.7879
2τ e-2 x 100 =   13.5335
3τ e-3 x 100 =    4.9787
4τ e-4 x 100 =    1.8316
5τ e-5 x 100 =    0.6738
  5τ is an important value!
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The effect of changing ω
The value of ω , measured on the imaginary (vertical) axis relates to the angular velocity of
any oscillations that may occur in the system. If both poles lie on the horizontal axis then ω  = 0 and
there will be no oscillatory motion. For oscillations to occur in the system, the system poles will
appear off the horizontal axis (as a complex conjugate pair).

When working with angular velocity (measured in radians per second), two important formulae are

fπω 2=  and 
ω
π21

==
f

T

where f is the frequency of the oscillations (measured in cycles per second or Hertz) and T (in
seconds) is the periodic time (time for one cycle) of the oscillations. Ordinary alternating mains
electricity in the UK operates at a frequency of 50 Hz. Its angular velocity is therefore π100
radians per sec and its periodic time is 1 / 50 sec or 20 ms.

In systems with exponentially decaying sinusoidal terms, knowing T, 5τ and that the input into the
system is a constant, it is possible to sketch a reasonable graph of the system response. But how
many oscillations do you sketch before the exponential decay kills off the transient response?
Consider the system with poles at j51±− . This has values k = - 1 and ω  = 5. The k = - 1
introduces a term involving e-1t into the solution, giving τ = 1/1 = 1 (seconds) and hence 5τ = 5

(seconds) and ω  = 5 results in sinusoidal terms with periodic time, 26.1
5

2
≈=

π
T (seconds).

Since the exponential damps the response “completely” by 5 seconds, then the system will perform
approximately 5/1.26 ≈  4 oscillations before reaching steady state. Use the applet, placing the
poles at j51±− , to verify this is the case. Note that actually seeing the fourth oscillation is rather
difficult since, by then,  the damping has all but done its job!

Now try “ The effect of changing ω  only” from the accompanying tutorial
worksheet together with the applet

Note that if the complex conjugate poles lie on the vertical axis only, then k  = 0. With 0≠ω , then the resulting
system output will be oscillatory with neither exponential growth nor decay. Oscillations that neither grow nor
decay are pure oscillations with constant amplitude. In this case the system is said to execute Simple Harmonic
Motion (SHM).
This you can easily see from the applet (although you may have to ramp up the value of P to its maximum
value to see this properly).
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For those of you using this sheet in isolation from the tutorial worksheet and/or
the applet, the following “Summary” has been extracted from the accompanying
worksheet in order to complete this theory sheet – but note the extra “Postscript”
below.

Summary
In a second-order system,
• poles always appear either (a) as complex conjugate pairs or (b) both on the real axis
• if any pole lies to the right of the vertical axis (i.e. in the right half-plane), then the system will

necessarily contain at least one exponential growth term and is said to be an unstable system.
• if both (or all, in the case of higher order systems) poles lie in the left half-plane, then the

system will necessarily contain exponential decay terms only (with no exponential growth
terms) and is said to be a stable system.

• if the poles appear as a complex conjugate pair on the vertical axis (but not both at the origin),
there will be neither exponential growth nor decay and the system responds with only pure
oscillations (simple harmonic motion, SHM). This system is said to be critically stable.

• if both poles are at the origin, there are neither exponential nor sinusoidal terms; the analytical
solution (hence output) for such a system is a pure quadratic increase (P >0).

• poles vertically further away from the horizontal axis will relate to higher frequency oscillations
than poles closer to the horizontal axis. Poles on the horizontal axis have zero frequency i.e. do
not contribute any oscillatory effect to the system output.

• moving the poles horizontally away from the vertical axis results in more rapid exponential
growth (or decay, depending whether the pole is in the right or left half-plane, respectively).
Conversely moving the poles horizontally towards the vertical axis relates to slower exponential
growth (or decay). Poles on the vertical axis relate to neither growth nor decay.

Postscript
Good systems’ designers don’t want to produce systems that are unstable so they must always
ensure that system poles only ever occur in the left half-plane. Fortunately, in the case of an LRC
series circuit or a mass-spring-damper system the parameters L, R, C and M, R and k will all be
positive. This ensures that the –b/2a term in the solution of the characteristic, quadratic equation is
always negative, so resulting in exponential decay always. In fact, any “real-world” second order
system will have positive parameters so in such a case then, it is impossible to build an unstable
system. For example, think about giving the mass-spring-damper a kick (but keeping the spring
within its elastic limit). Are any resulting oscillations likely to increase in amplitude indefinitely?
Hardly! So when are you likely to encounter unstable second-order-systems? Well, if you take a
second order system and use a “badly designed” feedback loop …

But this has to be for another applet / work sheet / theory sheet combination!


