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Second Order Linear Systems

The Mathematics f@%

L earning Outcomes VERS®
After usng the gpplet and the theory and tutorid worksheets you should
be aware of the second-order differential equation for the Mass-Spring-Damper system.
be aware of the second-order differentiad equation for the LCR series circuit.
be able to relate second-order differentia equations to second-order linear systems.
understand how a second-order system behaves as the system poles are moved in the s-plane
(Argand Diagram).

I ntroduction
Second order linear systems occur in various branches of Engineering and Science; two examples
are given here and are both governed by second-order differentia equations.

(1) The Forced Mass-Spring-Damper System
To the right is a schemdtic diagram of a spring suspended from afixed point. .~
A massis attached to the lower end of the spring and, in turn, a piston is fixed
below this mass. Findly, the piston is enclosed in a dashpot — this is the

damper. An externd force is gpplied to the mass (the bold arrow), which may @
be

acongtant force, or one that vibrates, or exponentialy decays or grows, etc. [f

The damping may be due solely to the dashpot arrangement as shown, but
may aso be due to internd damping such as friction within the spring, or i:‘

externd damping such as aerodynamic drag. This schematic diagram can be
used to represent, by the dashpot, whatever the cause of damping.

The displacement, y, a any time, t, of the massis the output from the system and can be moddled
by the second order differentid equation (a proof of which is not given here, but can be found in
the theory sheet for the “ Mass-Spring-Damper System” applet):

d2y dy
M—+R—=+ky=flt where

M isthe mass

Risthe damping factor. The damping force here is assumed to be proportiona to the velocity of
the mass - a reasonable approximation. Ris the constant of proportiondlity.

k is the spring siffness (it is assumed the spring is not extended beyond its dadtic limit, so
Hooke' s Law applies)

f(t) is the time-dependent, or congtant, externa force driving the system — it is the input to the
system (eg. f(t) = 20, f(t) = 10sin2t, f(t) = 60e®)

TheLCR Series Circuit
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Applying, amongst other things, Kirchhoff’'s 2™ Law and Ohm’s Law to this circuit leads to

di _di 1.
L—+R—+—i=f(t
a? dt C ()

Agan f(t) isthe input to the system (here, it is actudly the rate of change of applied voltage,

e(t)) and i is the current (output) in the circuit at time t. L, Rand C (inductance, resstance and
capacitance) are the parameters of the system.

Note the smilarity between the differentia equations of the two quite different systems given above.
This gmilarity is used in andogue systems in which a mechanica system can be smulated by the
equivaent eectrica sysem.

These differentid equations can be rewritten generdly as

d2y+bﬂ

2 Py Y=l

When Lagplace Trandorms are used to solve this equation with zero initid conditions, the
transformed compound agebraic fraction obtained (in terms of Laplace Transform’s ) is given, in
the usua notation, by
= Ly f(t
p=y=—HE

as®+bs+c

In order not to over complicate the output displayed on the screen,
theinput f(t) used in the accompanying softwareisf(t) = P whereP isa constant. So the
system hereis‘driven’ by a congtant forcing term.
Thevdueof P can be changed from 0 to 200 by moving the dider on the right of the screen.
The Laplace Transform of a congtant vaue P is, in the usud notation, P/s,
giving the full Laplace Transform of the system plus congtant forcing term as

P
L =V=
=y slas® +bs+c

The as? +bs+c part of the denominator of L{y} indicates that this is a second-order system,
which hasthe characteristic equation,

as’ +bs+c=0
The solution of this equation determines the position of the system’s two (but sometimes repesated)
polesin the s-plane (Argand Diagram). Note that there are three different types of solution to this
quadratic (j.e. second-order) equation depending on whether b® — 4ac is less than zero, equa to
zZexro, or greater than zero. Consider each of these cases separately:

() b*—4ac<0
This is the only one of the three cases where the poles will be complex and, in particular, complex
conjugates. Thisis because the solutions for the case b? — 4ac < 0 are
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_ b +dac- b* . b +dac- b® .
S=-—+—— ] ad sSs=-—- ——|
2a 2a 2a 2a
or, for compatibility with the accompanying gpplet, the system poles are placed a:
s=k+jw and s=k- jw

(Note: not the same k that was used in the differential equation for the mass-spring-damper system)

The system output relating to complex conjugete poles of thistypeis of the form
e“(Asn wt + Bcoswt)
Incorporating the congtant gpplied input results in the full output:
y =e"(Asnwt + Bcoswt)+C where A, B& C are congtants

An important point to note hereisthat if k is negative, then the system response involves exponential decay
only. In this case the system is said to be stable since, if the system is given a knock or displacement and has
no forcing term, it will settle back to its equilibrium position (courtesy of the exponential decay multiplying the
sinusoids). However, if k is positive then the system responds with exponential growth and is said to be an
unstable system.

In general then, for k < O (with its corresponding pole in the left half-plane of the Argand Diagram) this system
is stable. For k > O (with its corresponding pole in the right half-plane of the Argand Diagram) this system is
unstable.

(2 b*—4ac>0
In this case the characterigtic equation will have solutions:

_ b +/b*- 4ac b +/b*- 4ac
S=- —+— and s=-—- — ——
2a 2a 2a 2a

Here both solutions are wholly redl, no imaginary | term, so both poles will lie on the k axis only.
Sincew will be zero, there will be no oscillations. Also, the two s values are different; so the poles
will be at different postions on the k axis, say k; and k.

The system output relating to two red, digtinct poles, k; and ko, is of the form
Aeklt + Bek2t

Incorporating the constant applied input resultsin the full output:
y = Ae"' + Be** +C where A, B& C are constants

(both of these results are left as an exercise for the reader)

Notethat in this case, both k; and k, would have to bein the left half-plane (i.e. k; < 0 andk, < 0) for the system
to be a stable system. Either polein the right half-plane would result in aterm with exponential growth, hence
an unstable system.

(3)b*—4ac=0
In this case the characteristic equation will have solutions:
b b
S=- — and s=-—
2a 2a

i.e. repeated solutions. Again both poles are wholly redl, no imaginary j term, so both will lie on the
k axis. Again, w = 0, so no oscillations. Now, however, the two s vaues are the same; so the
poleswill be at the same position on thek axis, say k.

The system output relating to two red, equd poles, k; and ki, isof theform
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(A+Bt)e
Incorporating the congtant gpplied input results in the full output:
y=(A+Bt)e" +C whereA, B& C are constants

Note that in this case, k; “and k,” would have to be in the left half-plane (i.e. k; < 0) for the system to be astable
system.

The effect of changing k

The vdue of k, measured on the real (horizontal) axis rdates to the amount of exponentid
decay (for k <0) or exponentia growth (for k >0). k is cdled the ingtantaneous fractional growth
rate. Different vaues of k represent different amounts of growth (or decay):

Value of k Type of Response

k > 0 (large pogitive vaue) ‘fast’ exponentia growth
k > 0 (smdl positive vaue; close to zero) ‘dow’ exponentia growth
k=0 neither growth nor decay
k <0 (smdl negative vaue; closeto zero) ‘dow’ exponentia decay
k <0 (large negative vaue) ‘fast’ exponentia decay

At this point try “Changing k only” from the accompanying tutorial worksheet
together with the applet

Solutions containing exponential decay terms only (stable systems) — as found when usng
the software as suggested just above - consst of two parts, namely:
the transient (which is due to the system itsdlf and represented in the solution by the
exponential decay terms) and
the steady state (which depends on the type of input, here the system has an applied
constant force).
For congtant input, as used in the applet, the steedy date is necessarily a constant output. The
trangent is the way in which the system responds during the time it takes to reach its seady Sate (if
it has onel — a system acted upon with an increasing force will never settle down to a Steady date
vaue). Trangent means “short lived”. But how short is “short lived”? This can be determined from
the following table:

t

The right hand column shows that the vue of et varies

|-

t | & 100% from 100% &t t = 0to about 0.7% by t = 5t .
(as a percentage)
0 | € x100=100 It (Greek letter, “tau”) is called the “time constant” |

t | e*x100= 36.7879 o o 1
ot | e2x 100= 135335 | The implication is that by 4, the contribution of e ' has

3t | e3x100= 49787 died away to ‘practicdly nothing'. For our sysem, the
2 o9 x 1002 1'8316 exponentid terms are of the form e, so comparing with

t
_ N 1
5t | €°x100=_ 06738 | e, givestheimportant result, |t ==

5t isan important vauel K

Notethat here, thetime constant, t, isonly appropriate for exponential decay, not growth.

At this point try “The effect of changing k on the time constant, t” from the
accompanying tutorial worksheet together with the applet
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Theeffect of changing w

Thevdueof w, measured on the imaginary (vertical) axis relates to the angular velocity of
any oscillaions that may occur in the system. If both poles lie on the horizontal axisthen w =0 and
there will be no oscillatory motion. For oscillations to occur in the system, the system poles will
appear off the horizonta axis (as a complex conjugate pair).

When working with angular velocity (measured in radians per second), two important formulae are

W=D e T= 1= 2

w
where f is the frequency of the oscillations (measured in cycles per second or Hertz) and T (in
seconds) is the periodic time (time for one cyde) of the ostillations. Ordinary dternating mains
eectricity in the UK operates a a frequency of 50 Hz. Its angular velocity is therefore 1000
radians per sec and its periodic timeis 1/ 50 sec or 20 ms.

In systems with exponentidly decaying Snusoida terms, knowing T, 5t and that the input into the
sysem is a condtant, it is possible to sketch a reasonable graph of the system response. But how
many oscillations do you sketch before the exponentid decay kills off the trangent response?
Congdder the sysem with polesa - 1+5). Thishasvduesk =-1and w =5. Thek =- 1

introduces a term involving €™ into the solution, giving t = 1/1 = 1 (seconds) and hence & = 5
(seconds) and w = 5 reaults in sinusoidd terms with periodic time, T = % » 1.26 (seconds).
Since the exponential damps the response “completely” by 5 seconds, then the system will perform

approximately 5/1.26 » 4 ostillations before reaching steady sate. Use the applet, placing the
polesat - 1+5j, to verify thisis the case. Note that actualy seeing the fourth oscillation is rather

difficult snce, by then, the damping has dl but doneits job!

Now try “ The effect of changing w_only” from the accompanying tutorial
worksheet together with the applet

Note that if the complex conjugate poles lie on the vertical axisonly, thenk = 0. Withw 1 O, then the resulting
system output will be oscillatory with neither exponential growth nor decay. Oscillations that neither grow nor
decay are pure oscillations with constant amplitude. In this case the system is said to execute Simple Harmonic
Motion (SHM).

This you can easily see from the applet (although you may have to ramp up the value of P to its maximum
value to see this properly).
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For those of you using this sheet in isolation from the tutorial worksheet and/or
the applet, the following “Summary” has been extracted from the accompanying
worksheet in order to complete this theory sheet - but note the extra “Postscript”
below.

SUmmary
In a second-order system,

poles dways appear either (a) as complex conjugate pairs or (b) both on the red axis

if any pole lies to the right of the vertica axis (i.e. in the right haf-plane), then the system will
necessarily contain at least one exponentid growth term and is said to be an unstable system.

if both (or all, in the case of higher order systems) poles lie in the Ieft haf-plane, then the
system will necessarily contain exponentid decay terms only (with no exponentia growth
terms) and is said to be a stable system.

if the poles appear as a complex conjugate pair on the vertica axis (but not both at the origin),
there will be neither exponentid growth nor decay and the system responds with only pure
oscillations (3mple harmonic motion, SHM). This sysemis said to be critically stable.

if both poles are a the origin, there are neither exponentid nor sinusoidd terms; the andyticd
solution (hence output) for such a system is a pure quadratic increase (P >0).

poles verticaly further away from the horizontd axis will relate to higher frequency osaillaions
than poles closer to the horizontd axis. Poles on the horizontal axis have zero frequency i.e. do
not contribute any oscillatory effect to the system output.

moving the poles horizontally away from the verticd axis results in more rapid exponentiad
growth (or decay, depending whether the pole is in the right or left haf-plane, respectively).
Conversdly moving the poles horizontally towards the vertica axis relates to dower exponentia
growth (or decay). Poles on the verticd axis relate to neither growth nor decay.

Postscript
Good systems designers don't want to produce systems that are unstable so they must dways

ensure that system poles only ever occur in the left haf-plane. Fortunately, in the case of an LRC
series circuit or a mass-spring-damper system the parameters L, R, C and M, Rand k will dl be
positive. This ensures that the —b/2a term in the solution of the characteristic, quadratic equation is
aways negative, 0 resulting in exponential decay always. In fact, any “real-world” second order
system will have positive parameters so in such a case then, it is impossible to build an ungtable
system. For example, think about giving the mass-gpring-damper a kick (but keeping the spring
within its dadtic limit). Are any resulting oscillations likely to increese in amplitude indefinitely?
Hardly! So when are you likely to encounter unstable second-order-systems? Well, if you take a
second order system and use a“badly designed” feedback loop ...

But this hasto be for another gpplet / work sheet / theory sheet combination!
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