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First & Second Order Linear Systems:
Unforced Response

Theory Sheet

Learning Outcomes
After using the MathinSite First & Second Order System: Unforced Response applet and its
accompanying tutorial and theory sheets you should
• be aware of examples of engineering first and second order linear systems, their governing

differential equations and their solution types
• be able to model some of these situations mathematically
• have developed, through experimentation with the applet, an understanding of how the

different types of solution respond to changes in the solution’s parameters
• be able to answer “what if ...?” questions about the systems’ unforced response.

Prerequisites
Before using the applet, this theory sheet and any accompanying tutorial sheets, familiarity with the
following mathematics would be useful.

• The Straight Line
• The Exponential Function – including the notion of ‘time constants’
• Trigonometrical Functions (in particular sines and cosines)
• Differentiation and Integration, and
• The solution of linear first and second-order differential equations

However, even without this knowledge, just understanding how the systems respond can help
in your appreciation of the mathematics involved. Applets covering most of the above
mathematical topics can also be found on the MathinSite web site at
http://mathinsite.bmth.ac.uk/html/applets.html.

Equations from Situations – Some Examples
What forces act upon a heavy ball as it falls through water?
First, there is the gravitational force acting vertically
downwards, and secondly, the force due to the resistance of
the water vertically opposing the motion as the ball drops. The
retarding force due to the water resistance can be found
experimentally to be approximately proportional to the square
of the velocity of the ball. So the net force downwards, using
Newton’s Second Law, is given by

2dv
m mg mkv

dt
= −

where m is mass, v is velocity, t is time, g is the acceleration
due to gravity and k is the constant of proportionality for the
water resistance term.

This can be rewritten (after dividing throughout by m) as:

water

Force due to
gravity,
i.e. weight

Force due to
water
resistance
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2dv
kv g

dt
+ =

Unfortunately, owing to the presence of the v2 term, this differential equation is not linear.
However, as a rough-and-ready approximation (and only ever as such) the force due to water
resistance can be considered as proportional to v only, in which case this equation becomes

dv
kv g

dt
+ = (i)

which is of the more general form:

( )dy
a by f t

dt
+ =

that is, a linear first-order differential equation with constant coefficients.

Even so, our ‘heavy ball’ problem is still not quite in the format required here. The non-zero term
on the right-hand side of equation (i) is a forcing term. The ball is ‘forced’ by gravity to continue
to fall through the liquid despite a continuing retarding force due to liquid resistance (in such case
a terminal velocity will be reached). We want here to remove the forcing term. What sort of
situation would result in this?

Consider the following fairground ride as the truck passes through the water splash.

With, as a first approximation, v rather than v2 again and now, with no gravity to accelerate or
decelerate the truck horizontally, Newton’s Second Law becomes:

0
dv

kv
dt

+ =

This may have the overblown title of a linear, homogeneous first-order differential equation with
constant coefficients, but the main point to consider here is that the truck, once it enters the water
splash is unforced; no external force drives it on – eventually it will slow to a stop (given enough
length of track!). Since this motion ceases “after a short time”, it is called the transient response.

Other examples of first- and second-order systems can be found on MathinSite. For example,
the “LR Series Circuit” applet’s first theory sheet (to be found on
http://mathinsite.bmth.ac.uk/pdf/lrseries_theory1.pdf) shows that a series LR circuit with an applied
emf, e(t), has a governing first-order differential equation of the form:

( )di
L Ri e t

dt
+ =

Here the external (to the basic LR system) applied emf is the forcing term; remove this and it
becomes the unforced system

0
di

L Ri
dt

+ =

You might wonder how you get any response out of an unforced system such as this; you don’t -
if the initial condition is zero! (The initial condition is the value of the system’s dependent variable
– here current, i – usually when t = 0.) In the unforced systems considered so far, to obtain a
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non-zero output it is necessary to have a non-zero initial condition. For example, in the water
splash problem, there is no resultant velocity if the truck isn’t moving initially. In the unforced LR
circuit, no current will flow in the system if there was no current flowing in the first place. Note
that as these are both first-order situations, they only require a single initial condition.

Examples of differential equations governing second-order systems can be found in the “Mass
Spring Damper Systems” applet (whose theory sheet can be found on
http://mathinsite.bmth.ac.uk/pdf/msdtheory.pdf) and the “LRC Series Circuit” (whose theory sheet
can be found on http://mathinsite.bmth.ac.uk/pdf/lrcseries_theory1.pdf). These systems have the
following associated differential equations:

Each of these is derived in its associated theory sheet incorporating forcing terms. In the first, f(t)
is the externally applied force and in the second, e(t) is the externally applied voltage. So the
equivalent unforced systems will have governing equations:

As indicated previously, unforced systems will respond as long as they have non-zero initial
conditions. Now, all second-order systems require two initial conditions (as opposed to simply
the one required by first-order systems). For the mass-spring-damper, the two initial conditions
are invariably the initial displacement, y, and the initial velocity, v (which is the rate of change of
displacement, dy/dt). For the LRC series circuit governed by the above equation, they are the
initial charge on the capacitor, q, and the initial rate of change of charge, dq/dt (i.e. the current, i).

Solving first and second-order differential equations of these types are covered in the theory
sheets of the previously mentioned applets and so will not be covered here. However, a
discussion of the type of solution obtained from a first-order system is to be found in an appendix
to this document.

General Equations and Solutions
First-order Systems
The unforced first-order differential equations obtained from real-world situations considered here
are all of the same general type:

0
dy

a by
dt

+ =

The solution of any general equation of this type is always going to be of the form:
b
aty Ae−=

Re-labelling b/a as k, results in the form of this output used in the accompanying applet, namely:

TABLE 1: Output/Response/Solution of the first-order system
kty Ae−=

For an indication how this solution was obtained, using two different methods, see the particular case of the
solution of an LR circuit equation in the LR Series Circuit Theory Sheet.

2

2

1
( )

d q dq
L R q e t

dt Cdt
+ + =( )M

d y
dt

R
dy
dt

ky f t
2

2 + + =

2

2

1
0

d q dq
L R q

dt Cdt
+ + =0

2

2

=++ ky
dt
dy

R
dt

yd
M



Name ……………………………………… Course ……………………………….
Print and use this sheet in conjunction with MathinSite’s ‘1st & 2nd Order Systems: Unforced Response’ applet and tutorial

sheets.

P.Edwards, Bournemouth University, UK  2004 Page 4 of 6

For the associated ‘1st &2nd Order Systems’ applet, go to http://mathinsite.bmth.ac.uk/html/applets.html

In general then, for first-order systems such as those considered here, y, the time-dependent
response varies exponentially. In any real-world first-order system without feedback, the constant
coefficients a and b will necessarily both be positive (or perhaps for b, zero), in which case the
system response will always be an exponentially decaying output (or constant, if b = 0). The
constant, A, is effectively the ‘constant of integration’ and can be found using the initial condition.
In fact, A is the initial condition (since y = A when t = 0).

Second-order Systems
Unforced second-order differential equations obtained from real-world situations considered here
are all of the same type:

2

2
0

d y dy
a b cy

dtdt
+ + =

The solution of any general equation of this type is always going to take one of the following three
forms depending on the relative magnitude of b2 against 4ac:

TABLE 2: Output/Response/Solution of the second-order system
If … Solution is … Situation …

b2 > 4ac 1 2k t k ty Ae Be− −= + Heavy damping

b2 = 4ac ( ) kty A Bt e−= + Critical damping

b2 < 4ac ( )cos sinkty e A pt B pt= + Light damping

Again, re-labelling occurrences/combinations of a, b and c in solutions (output) obtained from the
second-order differential equation results in the form of this output used in the accompanying
applet, as given in the above table.

Note that the output of both first- and second-order unforced systems such as these always tend
to a steady-state value of zero - apart from the exceptional cases when some, or all, of the k
values are zero.

So what do typical responses look like?
The two tables above give the type of response exhibited by both types of system –
mathematically! Do you know what these responses look like graphically?

The associated applet allows the user to vary the parameters A, B, k, k1, k2 and p in such
solutions to determine visually how each affects system response. Since all types of response
encountered here are exponential and/or sinusoidal in nature, this applet can be considered as the
‘applied mathematics’ extension of the “Exponential Function” and “Trigonometrical Functions”
applets/worksheets - also available from MathinSite on
http://mathinsite.bmth.ac.uk/html/applets.html.
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Exercises
1. Use either (both?) the separation of the variables method or Laplace Transforms to solve

the first-order differential equation

0
dy

a by
dt

+ =  given that y = yo when t = 0.

How does your solution relate to the solution given in Table 1?
(Part answer: A is y0)

2. Use any method you know to find the general solution of the second-order differential
equation

2

2
0

d y dy
a b cy

dtdt
+ + =

given that
y = yo and dy/dt = y1 when t = 0

for the cases when
(i)   b2 > 4ac
(ii)  b2 = 4ac
(iii) b2 < 4ac

giving your answers in terms of the variables y and t and the parameters a, b and c.

3. From the answers you have obtained in Q. 2, find the values of A, B, k, k1, k2 given in
Table 2 in terms of any, or all, of a, b, c, yo and y1.
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Appendix

Analysis of different parts of the solution of a forced LR Circuit equation

An LR Series Circuit is a ‘linear system’, that is, it behaves according to the rule “what goes in,
comes out”. So a sinusoidal voltage as input, for example, results in a sinusoidal current as output.
However, before the circuit settles down to a steady state sinusoidal output, it usually exhibits an
exponential response (the transient – or ‘short lived’ - part of the response).

The LR differential equation’s solution comes in two parts:

)(tfAei L
Rt

+= −

The first part, L
Rt

Ae−  is called the Complementary Function (CF) and, containing R and L,
results from the system (circuit) itself. Here, –R/L is always negative (since R >0 and  L >0), so
the CF is always exponential decay for non-trivial cases. A can be negative or positive; if it is
positive, exponential decay occurs, if it is negative then exponential growth to a limit occurs. (For
further information see/use the ‘Exponential Function’ applet from MathinSite.)

Since L
Rt

Ae− eventually decays away, this part of the solution is called the transient.

The second part, )(tf  is called the Particular Integral (PI) and results from, and takes the
same form as, the forcing, applied voltage (the input to the system). So, if the applied voltage is a
sinusoid, the PI will also be a sinusoid (possibly a mix of sines and cosines); if the input is ptae
then the PI is ptBe  (or ( ) pteCBt +  under certain conditions).

f(t) is the steady state part of the response and will always be zero in unforced systems

The overall solution (current), i(t), is the sum of the CF and PI.

Note that various mixes of values for the initial conditions, system parameters and applied voltage
parameters can result in any part of the full solution being zero.

… and remember,
the PI (steady state output) is the same form as the input (forcing term)

… and so,
if the system is unforced, the PI part of the solution (response) is zero

… and so,
solutions of unforced systems only consist of the CF (the transient response)


