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L earning Outcomes
After usng the MathinSite First & Second Order System: Unforced Response gpplet and its
accompanying tutoria and theory sheets you should

be aware of examples of engineering first and second order linear systems, their governing
differential equations and their solution types

be able to model some of these situations mathematically

have developed, through experimentation with the gpplet, an understanding of how the
different types of solution respond to changes in the solution’s parameters

be able to answer “what if ...?" questions about the systems’ unforced response.

Prerequisites
Before using the gpplet, this theory sheet and any accompanying tutoria sheets, familiarity with the

following mathematics would be useful.
- TheSraght Line
The Exponentid Function —including the nation of ‘time congtants
Trigonometrica Functions (in particular Snes and cosines)
Differentiation and Integration, and
The solution of linear first and second-order differentid equations

However, even without this knowledge, just understanding how the systems respond can help
in your appreciaion of the mathematics involved. Applets covering most of the above
mathematicadl topics can dso be found on the MathinSite web dSte a
http://mathinsite.bmth.ac.uk/html/appl ets.html .

Equations from Situations— Some Examples

What forces act upon a heavy bdl as it fdls through water?

Firg, there is the gravitationd force acting verticaly gg\fify?”e o
downwards, and secondly, the force due to the resistance of i.e. weight
the water verticaly opposing the motion as the bdl drops. The
retarding force due to the water resistance can be found

experimentaly to be gpproximately proportiond to the square \ l v
of the velocity of the bal. So the net force downwards, using \ /
Newton’s Second Law, isgiven by ®

dv ) - water

m— =mg - Mkv

dt — —
where m ismass, v is velodty, t istime, g is the acceleration Force due to
due to gravity and k is the congtant of proportiondity for the water
water resistance term. resistance
This can be rewritten (after dividing throughout by m) as:
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dv

—- + kV2 =

dt J
Unfortunately, owing to the presence of the v* term, this differentiadd equation is not linear.
However, as a rough-and-ready approximation (and only ever as such) the force due to water

resistance can be considered as proportiond to v only, in which case this equation becomes
—tkv=g (i)
which is of the more generd form:

dy
a—+by=f(t
=1
that is, alinear firg-order differentia equation with congtant coefficients.

Even s0, our ‘heavy bal’ problem is till not quite in the format required here. The non-zero term
on the right-hand side of equation (i) isaforcing term. The bdl is ‘forced’ by gravity to continue
to fall through the liquid despite a continuing retarding force due to liquid resstance (in such case

a termind velocity will be reached). We want here to remove the forcing term. What sort of
gtuation would result in this?

Congder the following fairground ride as the truck passes through the water splash.

SN

With, as a first approximation, v rather than v? again and now, with no gravity to accelerate or
decdlerate the truck horizontally, Newton’s Second Law becomes:

ﬂ +kv=0

dt
This may have the overblown title of a linear, homogeneous firg-order differentid equation with
constant coefficients, but the main point to consider here is that the truck, once it enters the water
plash isunforced; no external force drivesit on — eventudly it will dow to a stop (given enough
length of track!). Since this motion ceases “after ashort time’, it is caled the transient response.

Other examples of first- and second-order systems can be found on MathinSite For example,
the “LR Seies Circuit” applet's firs theory sheet (o be found on
http://mathinsite.bmth.ac.uk/pdf/Irseries theoryl.pdf) shows that a series LR circuit with an gpplied
emf, e(t), has agoverning firg-order differentia equation of the form:

L%+m:em

Here the external (to the basic LR system) applied emf is the forcing term; remove this and it
becomes the unforced system

Lﬂ+ Ri =0
dt

Y ou might wonder how you get any response out of an unforced system such as this; you don't -
if theinitia condition is zero! (The initid condition is the vaue of the system’s dependent varigble
— here current, i —usudly when t = 0.) In the unforced systems considered so far, to obtain a
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non-zero output it is necessary to have a non-zero initia condition. For example, in the water
Splash problem, there is no resultant velocity if the truck is't moving initidly. In the unforced LR
circuit, no current will flow in the system if there was no current flowing in the first place. Note
that as these are both first-order Stuations, they only require asingle initid condition.

Examples of differentid equations governing second-order systems can be found in the “Mass
Spring Damper Sysems’ applet (whose theory shet can be found on
http://mathinsite.bmth.ac.uk/pdf/msdtheory.pdf) and the “LRC Series Circuit” (whose theory sheet
can be found on hitp://mathinsite.omth.ac.uk/pdf/Ircseries theoryl.pdf). These sysems have the
following associated differentia equations:

2
oyl

2
LM+ %+1

M +ky = f(t) e Rdt Cq=e(t)

Each of these is derived in its associated theory sheet incorporating forcing terms. In the firgt, f(t)
is the externdly gpplied force and in the second, e(t) is the externdly gpplied voltage. So the
equivaent unforced sysemswill have governing equations:
d? d? dg 1
Mdt—2y+R%+ky:O Ldt—2q+Rd—?+Eq:0

As indicated previoudy, unforced systems will respond as long as they have non-zero initid
conditions. Now, al second-order systems require two initia conditions (as opposed to smply
the one required by firg-order systems). For the mass-gpring-damper, the two initid conditions
are invariably the initid digolacement, y, and the initid veocity, v (which is the rate of change of
displacement, dy/dt). For the LRC series circuit governed by the above equation, they are the
initid charge on the capacitor, g, and the initia rate of change of charge, dg/dt (i.e. the current, i).

Solving firg and second-order differentia equations of these types are covered in the theory
sheets of the previoudy mentioned gpplets and so will not be covered here. However, a
discussion of the type of solution obtained from a first-order system is to be found in an gppendix
to this document.

General Equations and Solutions

Firg-order Systems

The unforced first-order differential equations obtained from real-world Stuations consdered here
are dl of the same generd type:

aﬂ+byzo

dt
The solution of any generd equation of thistypeisalways going to be of the form:

y=Ae*
Re-labdling b/a as k, resultsin the form of this output used in the accompanying gpplet, namdly:

TABLE 1. Output/Response/Solution of thefirst-order system

y=Ae"

For an indication how this solution was obtained, using two different methods, see the particular case of the
solution of an LR circuit equation in the LR Series Circuit Theory Sheet.
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In generd then, for firg-order systems such as those consdered here, y, the time-dependent
response varies exponentidly. In any rea-world firg-order system without feedback, the congtant
coefficients a and b will necessarily both be postive (or perhaps for b, zero), in which case the
system response will dways be an exponentidly decaying output (or condtant, if b = 0). The
congant, A, is effectively the ‘congtant of integration’ and can be found using the initid condition.
Infact, Aistheinitid condition (Sncey = Awhent = 0).

Second-order Systems
Unforced second-order differentia equations obtained from rea-world stuations considered here
aredl of the same type:

d’y  dy
a—>-+b—=+cy=0
@ a

The solution of any generd equation of thistype is always going to take one of the following three
forms depending on the rdative magnitude of b® againgt 4ac:

TABLE 2: Output/Response/Solution of the second-order system
If... Solution is... Situation ...
b? > 4ac y=Aek +Be ! Heavy damping
b? = 4ac y=(A+Bt)e" Critical damping
b’ < 4ac y = €' (Acos pt + Bsin pt) Lignt damping

Again, re-labdlling occurrences/combinations of a, b and ¢ in solutions (output) obtained from the
second-order differentid equation results in the form of this output used in the accompanying
aoplet, as given in the above table.

Note that the output of both first- and second-order unforced systems such as these always tend
to a steady-state value of zero - gpart from the exceptiona cases when some, or dl, of the k
values are zero.

So what do typical responses ook like?
The two tables above give the type of response exhibited by both types of sysem —
mathematically! Do you know what these responses look like graphically?

The associated applet dlows the user to vary the parameters A, B, Kk, ki, k; and p in such
solutions to determine visudly how each affects sysem response. Since dl types of response
encountered here are exponentia and/or snusoida in nature, this applet can be consdered as the
‘gpplied mathematics extenson of the “Exponentid Function” and “Trigonometrica Functions’
applets'worksheets - s available from MathinSite on

http://mathingte bmth.ac.uk/ntmi/appletshtml.
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Exercises
1. Usedther (both?) the separation of the variables method or Laplace Transforms to solve
the firg-order differentia equation

a%+ by =0 giventhaty = y,whent = 0.

How does your solution relate to the solution given in Table 1?
(Part answer: A isyp)

2. Use any method you know to find the general solution of the second-order differentia

equation
aﬂ + bﬂ +cy=0
dt> ot
given that
y=Yoanddy/dt=y,whent=0

for the caseswhen

() b*>4ac

(i) b*=4ac

(iii) b? < 4ac

giving your answersin terms of the variablesy and t and the parameters a, b and c.

3. From the answers you have obtained in Q. 2, find the vaues of A, B, k, ki, kx> given in
Table2intermsof any, or dl, of a, b, ¢, y, and y;.
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Appendix

Analysis of different parts of the solution of aforced L R Circuit equation

An LR Series Circuit is a ‘linear system’, that is, it behaves according to the rule “what goesin,
comes out”. So asnusoida voltage as input, for example, resultsin asinusoida current as output.
However, before the circuit settles down to a steady state Snusoidd output, it usudly exhibits an
exponentia response (the transient —or ‘short lived’ - part of the response).

The LR differential equation’s solution comesin two parts.

i=Ae T+ f(1)

Thefirg part, Ae T iscdled the Complementary Function (CF) and, containing Rand L,
results from the system (circuit) itsdf. Here, —-R/L is dways negative (Snce R>0 and L >0), so
the CF is always exponential decay for non-trivid cases. A can be negdive or pogtive if it is
positive, exponentia decay occurs, if it is hegative then exponentid growth to alimit occurs. (For
further information seefuse the * Exponentia Function’ gpplet from MathinSite)

Since Ae T eventualy decays away, this part of the solution is cdled the transient.

The second part, f (t) iscadled the Particular Integral (Pl) and results from, and takes the
same form as, the forcing, applied voltage (the input to the system). So, if the gpplied voltageisa
sinusoid, the Pl will dso be asinusoid (possibly amix of sines and cosines); if theinput is ae™
thenthe Pl is Be™ (or (Bt + C)e™ under certain conditions).

f(t) isthe steady state part of the response and will always be zero in unforced systems

The overdl solution (current), i(t), is the sum of the CF and PI.

Note that various mixes of values for theinitial conditions, system parameters and applied voltage
parameters can result in any part of the full solution being zero.

... and remember,
the Pl (Steady State output) is the same form asthe input (forcing term)
... and 0,
if the system isunforced, the Pl part of the solution (response) is zero
... and 0,
solutions of unforced systems only consist of the CF (the transient response)
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